Статья: накопитель энергии на основе инверторов МАП SINE Энергия и GRAND
Описание возможностей и применения предлагаемых аккумуляторов, сравнение с другими маркими и типами АКБ – см. в статье ниже.
Коротко разберём распространённое мнение – «при последовательном соединении двух аккумуляторов (АКБ), их ёмкость не меняется, она остаётся такой же, как у одного аккумулятора, поэтому время автономной работы при таком соединении будет меньше».
Но как же закон сохранения энергии? Да, при последовательном соединении аккумуляторов, формально ёмкость считается как у одного аккумулятора, а напряжение удваивается (или утраивается, учетверяется и т.д., в зависимости от количества последовательно соединённых АКБ). При параллельном же соединении АКБ – ёмкость удваивается (утраивается и т.д.), а напряжение остаётся тем же.
Противоречия здесь нет. Когда люди говорят об аккумуляторе (обычно об автомобильном), то сообщают его ёмкость, но не уточняют вольтаж. Просто все привыкли, что аккумуляторы имеют напряжение 12 В, и подразумевается, что упоминать об этом глупо. Но в вообще-то, ёмкость без указания вольтажа не имеет физического смысла. Существуют аккумуляторы самой разной ёмкости и на разное напряжение – на 2 В, и на 6 В, и на 12 В, и, редко, на 24В. Кроме того, любые одинаковые АКБ можно соединять последовательно, параллельно, или последовательно-параллельно одновременно.
Но стоит только указать после величины ёмкости, её вольтаж, как всё встаёт на свои места. Ведь ЭНЕРГОЁМКОСТЬ в любом случае, как бы мы не соединяли аккумуляторы, останется прежней.
Итак, если, например, два АКБ по 200 Ач×12 В , соединить последовательно, то получится энергоёмкость 200 Ач×24 В. А если эти же два АКБ соединить параллельно, то получится – 400 Ач×12 В. Проверим:
200 Ач×24 В = 480 = 400 Ач×12 В
Но для расчётов токов (обычно, номинальным током заряда считается ток 0,1×С, где С –величина равная ёмкости аккумулятора), С берут именно по цифре слева, т.е. в нашем примере, при последовательном соединении С = 200, а при параллельном С = 400.
Легко заметить, что и мощность зарядного устройства в обоих случаях будет одинаковой.
Для первого случая, зарядный ток будет 0,1×200 = 20 А, но при напряжении 24 В. Т.е. зарядная мощность, Р = 20 А×24 В = 480 Вт
Для второго случая, зарядный ток будет 0,1×400 = 40 А, но при напряжении 12 В. Т.е. зарядная мощность, Р = 40 А×12 В = 480 Вт
Если рассматривать одиночные аккумуляторы, то например один аккумулятор 600 Ач×2 В, по своей энергоёмкости соответствует одному аккумулятору 100 Ач×12 В.
Чтобы получить из этих аккумуляторов (600 Ач×2 В) большую аккумуляторную батарею, например, на 24 В, нужно соединить последовательно 12 шт таких АКБ. Общая итоговая ёмкость получится 600 Ач×24 В. Эта энергоёмкость, если сравнивать её с 12-и вольтовыми АКБ по 200 Ач (а такие применяются в грузовиках), соответствует 6-и штукам (три соединённых параллельно цепочки аккумуляторов, где каждая цепочка состоит из двух соединённых последовательно аккумуляторов):
(600 Ач×2В)×12 = 600 Ач×24 В = (200 Ач×24 В) + (200 Ач×24 В) + (200 Ач×24 В)
Обратите внимание – на всех рисунках специально показано, что если минус инвертора подключён к условно первому АКБ, то плюс – к последнему. Так его следует подключать, чтобы компенсировать сопротивление даже толстых медных проводов соединяющих аккумуляторы. Иначе, из-за их сопротивления, при огромных токах, «дальний» от выводов инвертора аккумулятор, окажется и не »дозаряжаем», и не »доразряжаем».
Чтобы аккумулятор служил долго, его нельзя разряжать более чем на 80%. Для 12-и вольтового АКБ, это соответствует напряжению на его клеммах примерно 11,5 – 11,7 В. Но тут важно каким током относительно емкости АКБ мы его разряжаем.
Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор. Это потому, что при быстром разряде большими токами относительно маленькой ёмкости аккумулятора, электролит не успевает перемешиваться и разряженный слой скапливается вокруг пластин. Напряжение АКБ падает и нагрузка автоматически снимается инвертором (в его меню допустим установлена нижняя граница напряжения АКБ при котором ещё идёт потребление энергии). Однако, спустя несколько десятков минут, электролит перемешивается и ёмкость (и, соответственно, напряжение аккумулятора) повышаются.
Если же разряжать малым током относительно ёмкости, то можно вычерпать всю энергию, что плохо для долговечности АКБ. Всегда надо оставлять не менее 20% ёмкости. Поэтому, можно установить то конечное напряжение на АКБ, при котором даже при отсутствии нагрузки какая-то ёмкость ещё остаётся (например для обычного кислотного АКБ при напряжении 11,5 – 11,7 В даже без нагрузки в АКБ ещё остаётся 20% ёмкости. А если будет нагрузка и инвертор отключит АКБ при 11,5 В, то ёмкости при этом в АКБ останется ещё больше – это только лучше для долговечности АКБ). Поэтому измерять ёмкость через специальный шунт или более грубо, по напряжению на АКБ – не столь уж важно, ведь в последнем случае возможен только запас остаточной ёмкости (т.е. погрешность идёт на пользу долговечности АКБ). Подробнее об этом далее.
Отметим, что во время заряда, зарядное устройство постепенно повышает напряжение на АКБ, а затем, после снятия заряда, напряжение уменьшается, возвращаясь к спокойному состоянию (так, на 12-и вольтовом аккумуляторе, в зависимости от типа АКБ, оно обычно растёт до 14,1 – 14,5 В, а после снятия заряда, даже без нагрузки, в течении получаса возвращается к нормальному для 100% заряженного АКБ 12,5 – 12,8 В).
1. В настоящее время, практически весь объём рынка АКБ занимают свинцово-кислотные АКБ. У них неплохие параметры, КПД 80% и самая низкая цена.
2. Малую часть рынка занимают щелочные АКБ. У них высокая цена, устойчивая работа при очень низких температурах и очень маленький КПД 50%. Именно из-за последнего они практически не подходят для организации автономного и резервного электропитания.
3. Новейший тип литий-железо фосфатных АКБ пока тоже распространён мало. Это вызвано и новизной и высокой ценой первичных вложений денег на их покупку. Однако, из-за их очень длительного срока службы, цена использования оказывается сопоставимой или даже ниже чем у лучших свинцово-кислотных АКБ (все сравнительные данные будут показаны в таблице ниже). У них КПД 94%, устойчивость к разрядам и недозарядам, возможность быстрого заряда. К их недостаткам можно отнести затруднённость использования при отрицательных температурах.
Далее дадим краткое пояснение по типам свинцово-кислотных АКБ. А именно - что такое аккумуляторы гелевые, типа AGM, панцирные и др.
Стартерные автомобильные – самые слабые и недолговечные аккумуляторы. Требования к ним небольшие, поэтому они делаются по простейшей технологии (штампованные свинцовые относительно тонкие решётчатые пластины). Бывают обслуживаемые (требуют проверки уровня электролита и доливки дистиллированной воды, обычно раз в год) и не обслуживаемые герметизированные (в случае перезаряда большими токами или напряжениями, если вода в них выпарится через срабатывания предохранительного клапана, долить её уже нельзя и АКБ выбрасываются).
Обслуживаемые автомобильные АКБ выдерживают порядка 100 - 200 циклов разрядов на 80%. Количество циклов зависит от качества изготовления, что связано с именитостью (масштабностью и временем существования производителя), а значит надёжностью и честностью производителя. Честность тут проявляется в количестве свинца расходуемого на один АКБ, т.е. насколько пластины будут тонкими. Косвенно можно оценить это по весу АКБ разных производителей, но одинаковой ёмкости.
Герметизированные автомобильные АКБ – в идеальном случае выдерживают около 200 циклов. Мы пишем «в идеальном», т.к. герметизированные автомобильные АКБ гораздо требовательней к условиям эксплуатации. Нельзя превышать зарядных токов и повышенных напряжений заряда (это чревато выпариванием воды которую нельзя долить), они более критичны к глубоким разрядам или долгому нахождению их в таком состоянии. Особенно для АКБ, сделанных на основе кальциевых сплавов (а автомобильные герметизированные АКБ обычно как раз кальциево-свинцовые). Кальциевые сплавы в АКБ вообще малопригодны для автономного и бесперебойного электроснабжения.
AGM – кислотные герметизированные аккумуляторы, в которых электролит адсорбирован стекломатами. Выдерживают примерно 250 – 400 циклов разрядов на 80%. Технология изготовления пластин обычная (правда сами пластины потолще), поэтому и количество циклов относительно мало. Чувствительны к перезарядам.
Гелевые – кислотные герметизированные аккумуляторы, в которых электролит загущён с помощью селикогеля. Выдерживают примерно 350 – 500 циклов разрядов на 80%. Технология изготовления пластин обычная, поэтому и количество циклов не велико. Более чувствительны к перезарядам (может выпариться вода). Необходимо обеспечить точное соответствие зарядных токов и напряжений паспортным (для них напряжение конца заряда обычно ниже, чем у других АКБ).
Панцирные – это широкий класс высококачественных кислотных аккумуляторов, построенных на решетчатой структуре пластин с трубчатыми электродами. Так называемые трубчатые положительные плиты, в которых каждый компонент заключен в полимерный кислотопроницаемый стержень, изготавливаются из сплава химически чистого свинца (чистота металла не менее 99,9%) и 2 - 6% сурьмы. Данная технология применяется во всех долговечных промышленных типах АКБ (тяговых, стационарных, солнечных, как малообслуживаемых, так и герметизированных) с большим сроком службы. Герметизированные гелевые АКБ, сделанные на основе панцирных пластин, выдерживают порядка 900 - 1000 циклов разрядов на 80%. Кислотные малообслуживаемые - около 1500 циклов. Вес относительно ёмкости у всех панцирных АКБ наибольший (что очень хорошо, т.к. в пластинах/трубках свинца много).
Так же, часто АКБ делят по сфере применения - стартерные (о них говорилось в начале раздела), тяговые, стационарные, солнечные.
Тяговые – предназначены для использования в электроподъемниках и другой электротехнике. Обычно, общая аккумуляторная батарея на нужное напряжение, составляется из батарей на 2 В большой ёмкости каждая (200 – 1200 Ач). Настоящие тяговые АКБ, сделаны по панцирной технологии. Стандартная маркировка – малообслуживаемые PzS, герметизированные гелевые – PzV. Встречаются тяговые АКБ и с обычной (не панцирной) технологией пластин (например, американские Trojan T105). Количество циклов разрядов у таких АКБ существенно меньше (900 против 1500).
Стационарные – применяют на промышленных объектах (там необходима повышенная долговечность и надёжность). Обычно, общая аккумуляторная батарея на нужное напряжение, составляется из батарей на 2 В. Они большой ёмкости – одиночные аккумуляторы бывают от 200 до 1200 Ач. Все используют панцирную технологию. Выпускаются как малообслуживаемые (в прозрачном корпусе OPzS), так и герметизированные гелевые (OPzV). У них самая большая надёжность и самый большой срок службы из всех типов аккумуляторов.
Солнечные – обычно модификация тяговых или стационарных аккумуляторов. Эти батареи выпускаются как на 2 В, так и на 6 или 12 В. Обычно имеют панцирную технологию. Во многих случаях это стационарные или тяговые АКБ с другой маркировкой/названием (это маркетинговый ход).
Отметим, что долговечность и надёжность всех 12-и вольтовых АКБ ниже, чем у аналогичного типа аккумуляторов, но на 2 В. Это связано с технологией изготовления. Ведь 12-и вольтовые АКБ состоят из таких же банок по 2 В аккумуляторов малой ёмкости, незаметно соединённых в общий корпус. Т.е. любой одиночный аккумулятор 12 В состоит из шести встроенных маленьких аккумуляторов по 2 В. Поэтому, для повышения надёжности и долговечности, рекомендуем набирать необходимую ёмкость сразу из 2-х вольтовых банок аккумуляторов большой ёмкости.
Предварительный вывод: для автономного и резервного электроснабжения наиболее подходящими по параметру цена/долговечность являются панцирные тяговые модернизированные АКБ (с особо чистым электролитом и пробками с рекомбинацией водорода). Мы предлагаем подобную модификацию аккумуляторов под маркой АКБ МИКРОАРТ.
В таблице далее, указаны свойства и параметры аккумуляторов разных типов. Рассчитана как цена покупки оптимальной (для дома) общей ёмкости аккумуляторов 400 Ач×24 В (или 200 Ач×48 В), так и цена 1 цикла разряда/заряда подобной ёмкости, длительность эксплуатации в автономном и в буферном режиме и т.д. Данные этой таблицы позволяют сделать лучший выбор для конкретных условий эксплуатации, с учётом отношения цены/качества и возможностей.
Таблица, с расчетом стоимости покупки, стоимости цикла и срока службы АКБ
Внимательно изучив сравнительную таблицу можно сделать много полезных выводов. Разберём два варианта эксплуатации аккумуляторов для электроснабжения – полностью автономное электроснабжение (промышленного электричества на объекте нет вообще) и резервное (т.е. когда сеть 220 В есть, но иногда пропадает).
1. Для эксплуатации в условиях полного автономного электроснабжения (а это почти полные разряды на 80%), наиболее выгодны литий-железо фосфатные АКБ и кислотные тяговые панцирные АКБ Микроарт. Применение в тяговых аккумуляторах особо чистого электролита (ОСЧ) и рекомбинации водорода (RP-500 и RP-1000) существенно повысило их долговечность, оставив цены демократичными. Стоимость одного цикла их заряда/разряда (для суммарной ёмкости батареи 400 Ач×24В, набранной из нескольких аккумуляторов), при условии разрядов на 80% (подобных разрядов эти АКБ выдерживают 1500), составляет рекордные 35 - 40 руб (см. таблицу).
Примерно столько же стоят циклы заряда/разряда при автономной эксплуатации (частые разряды на 70%) у литий-железо фосфатных АКБ (5000 циклов, 40 руб за цикл). Причём, что особенно важно, у них очень хорошие параметры для полной автономии – они не боятся долго находиться в разряженном состоянии, не критичны к периодическим недозарядам, имеют КПД 94%. Главный их минус - цена первичных вложений (посмотрите в таблице графу первичные вложения). Так же они плохо переносят заряд при отрицательных температурах, и требуют установки BMS (Battery Manegement System). Реализация заряда таких аккумуляторов существенно сложнее, чем любых других, и пока мало какие инверторы и солнечные контроллеры способны на это (инвертор МАП и в солнечный контроллер ECO Энергия MPPT.Pro это умеют). Помимо специального алгоритма, для их нормального заряда и функционирования, как уже говорилось, необходимы BMS. Это система управления распределения энергии между батареями и контроля состоянием каждой из них, причём с обратной связью с заряжающим инвертором и/или с солнечным контроллером.
По первичным вложениям (цена условной общей ёмкости 400Ач×24В) тяговые панцирные АКБ Микроарт находятся на втором почётном месте (на первом находятся автомобильные стартерные батареи, которые мало подходят для автономного электроснабжения) – 55000 руб – 65000 руб. А литий-железофосфатные АКБ почти на последнем – 204000 руб.
Времени, на которое хватит 1 цикла заряда/разряда, такой, чаще всего устанавливаемой ёмкости (400 Ач×24В), как известно из практики, в зависимости от конкретных условий потребления, обычно составляет от 2 до 6 дней. В среднем можно считать - на 4 дня автономии. Т.е. 4дня×1500циклов = 6000дней или около 16 лет. Число циклов 1500, взято из технических характеристик разряда АКБ Микроарт до 80% от исходной ёмкости.
Вообще, число циклов при определённых степенях разрядов, считается до того момента, когда аккумулятор далее нельзя эксплуатировать. Согласно ГОСТ Р МЭК 60896-2-99 на свинцово-кислотные стационарные батареи, аккумулятор нельзя далее эксплуатировать, если его фактическая ёмкость уменьшилась на 20%, т.е. стала 80% от исходного значения.
Указанное число циклов 1500 (при 80%-ых степенях разрядов), рассчитано для идеальных условий, которые не бывают при реальной эксплуатации. Так, всегда необходим своевременный и 100% заряд, необходима температура эксплуатации АКБ порядка +25С. Поэтому 1500 циклов, это несколько завышенное теоретическое значение. Однако, реально, до 10 - 12 лет автономии, при использовании тяговых АКБ Микроарт и более-менее правильной их эксплуатации, вполне возможны (при расчете этого значения в таблице, мы учли соответствующие поправочные коэффициенты).
Для справки, если заряжать АКБ от бензогенератора до 100%, т.е. 12-и часовым зарядом, то на заряд ёмкости 400Ач×24В потребуется примерно 20 л бензина, т.е. ещё примерно 500 руб/цикл. А при ускоренном 6-и часовом заряде, т.е. до 80% ёмкости, - 10 л.
Причём, если заряжать только ускоренным 6-и часовым зарядом, то АКБ, от постоянного недозаряда, намного быстрее потеряют свою первоначальную ёмкость. Поэтому, 100% заряд необходимо проводить не менее 1 раза в месяц. Поэтому, для полной автономии покупка солнечных панелей, а в некоторых случаях и ветрогенератора, является почти обязательной (ведь они будут периодически дозаряжать АКБ до 100% малыми токами, что многократно повысит срок службы АКБ).
В меню инвертора МАП, для зарядов от генератора (и аналогично от сети 220 В) надо выбрать режим заряда «3СтупенДозаряд» - тогда заряд будет проходить выбранными токами для 2- ступеней с дозарядом до 100% (за 12 часов если разряд был почти полным). Последнее означает, что после достижения выбранного конечного напряжения (для тяговых малообслуживаемых, соединённых на 24 В, это 29 В), МАП не снимет заряд, а оставит указанное напряжение на АКБ до тех пор, пока зарядный ток не уменьшится до 0,02С, где С – общая ёмкость АКБ (для вышеуказанной ёмкости 400Ач×24В, это 0,02×400=8 А).
Для тяговых АКБ начальный ток выбирают 0,13 – 0,15С (соответственно 50 - 60А), а вторую ступень можно сделать 0,1С или оставить 0,13С).
Для гелевых, AGM и стартерных АКБ, начальный ток рекомендуется 0,1С, но для экономии топлива, иногда выбирают 0,2С. Правда в случае гелевых и AGM аккумуляторов, при таких повышенных в 2 раза токах, происходит небольшой выход водорода. А долив воды в них невозможен, что несколько сокращает их ресурс.
Немного подробнее опишем АКБ с минимальной стоимостью цикла в автономном режиме (для условной ёмкости 400Ач×24В) АКБ Микроарт.
Это кислотные малообслуживаемые панцирные 2-х вольтовые аккумуляторные батареи с трубчатыми положительными пластинами.
Аккумулятор состоит из пакета положительных трубчатых панцирных и отрицательных решетчатых пластин. Именно панцирная конструкция положительных пластин препятствует быстрому их разрушению и обеспечивает большой срок службы аккумуляторов батареи в целом.
Панцирные источники питания способны при ежедневной разрядке-зарядке служить до 6 лет. Они выдерживают не менее 1500 циклов разрядки-зарядки, после чего емкость АКБ падает на 20-25%.
Стандартный модельный ряд (2 В аккумуляторы соединяются последовательно на необходимое напряжение 12, 24, 48 или 96 В):
Комплектуется особо чистым электролитом (ОСЧ), что существенно продлевает временной срок эксплуатации не связанный с циклами. ОСЧ электролит (доля железа (Fe) не более 0,01 мг/л, хлористых соединений (Cl) не более 1,0000 мг/л и т. д.) применяют в очень дорогих стационарных АКБ (срок эксплуатации которых 20 лет). Именно поэтому, для эксплуатации в возобновляемой энергетике мы предлагаем заливать такой же ОСЧ электролит и в тяговые панцирные АКБ.
Аккумуляторы по 2В имеют ёмкость до 1000 Ач, что позволяет снижать их общее количество, а следовательно повышать надёжность.
Например, соединив на напряжение 24 В двенадцать 2 В банок по 400 Ач, мы получим ёмкость 400 Ач×24В. Это аналог 4 шт соединённых последовательно-параллельно обычных 200Ач×12В. Если эти обычные АКБ обслуживаемые, то количество вывинчиваемых пробок (для проверки уровня электролита) будет 6×4=24 шт. А у панцирных батарей 400 Ач их 12 шт (по одной пробке на банку), что несколько облегчает обслуживание (к тому же, крышка пробки у последних легко откидывается набок).
Также, для снижения требований к проветриванию помещений, и для уменьшения вероятности забыть проверить уровень электролита, и, как следствие, преждевременной порчи АКБ, предлагается комплектация особыми пробками с катализаторами для рекомбинации водорода (существует два вида катализаторов - работающие с АКБ до 500 Ач и до 1000 Ач).
В итоге, многократно снижаются требования к необходимости вентиляции помещения! Можно проводить проверки уровня электролита (для доливки воды, при необходимости) всего 1 раз примерно в 3 - 6 лет (зависит от интенсивности эксплуатации). В рекомбинационных пробках происходит соединение выделяющегося из АКБ водорода с кислородом и образование воды, которая стекает обратно в АКБ.
Пробки рекомбинации в работе: Выделяющийся водород соединяется с кислородом, преобразуясь в воду, которая, конденсируясь каплями, стекает обратно в аккумулятор
Намного более дорогие стационарные малообслуживаемые панцирные АКБ типа OPzS являются рекордсменами среди кислотных АКБ по длительности использования и надёжности. Однако прирост долговечности менее заметен, чем прирост цены относительно панцирных тяговых АКБ.
Отличительные особенности этих батарей:
Отдельные элементы (2В) установлены в прозрачных пластиковых корпусах из стирол-акрилнитрила (SAN), материала, который сверхустойчив к химическому воздействию и механическим повреждениям, и который не горит.
Поскольку корпуса прозрачные, уровень электролита четко виден, максимальный и минимальный уровни промаркированы.
При промышленном применении, исключительно важны надёжность и долговечность:
Обычно батареи OPzS поставляются сухозаряженными: батареи должны быть залиты электролитом и дополнительно подзаряжены перед использованием. Пластины уже сформированы и по специальной методике защищены против окисления. Они могут храниться без снижения свойств до 2-х лет.
Здесь мы сделаем пояснение по отличию обслуживаемых панцирных тяговых (PzS) от обслуживаемых панцирных стационарных (OPzS) АКБ. Первые должны отработать 1500 циклов заряда/разряда и вторые – тоже 1500 циклов.
Но первые каждый день разряжают/заряжают, используя их на погрузчиках, а вторые могут стоять годами в ожидании аварий. Поэтому для первых, в режиме ожидания допустим меньший срок службы, чем для вторых. А значит можно применять менее чистый свинец и не особо чистый электролит, что дешевле. Можно применять и непрозрачный корпус, что тоже дешевле. Ну и, исходя из маркетинговых соображений, для богатых организаций связи стационарные OPzS можно продавать дороже, чем PzS для складких компаний для погрузчиков. Отсюда вытекает неоправданно высокая цена OPzS по сравнению с PzS (она примерно раза в 2 - 3 выше!).
Но в PzS тоже можно заливать особо чистый электролит. Можно поставить на них и специальные пробки с рекомбинацией водорода (как их ставят на самые дорогие OPzS) и получить фактически герметизированные АКБ, но с возможностью долива воды! Эти пробки-рекомбинации, выделяющийся водород превращают в воду, которая стекает обратно в АКБ. Поэтому проверять уровень электролита можно не 1 раз в год, а 1 раз 6 лет.
Кроме того, АКБ типа PzS делают обычно с содержанием сурьмы в сплаве со свинцом до 6%, а OPzS - с содержанием сурьмы до 3% (что способствует меньшему выпариванию воды и позволяет проверять уровень электролита раз в 3 года без всяких пробок-рекомбинации).
Однако большее выпаривание не будет иметь значения с пробками-рекомбинации, а большее содержание сурьмы делает АКБ более устойчивым к глубоким разрядам. И это особенно важно для целей автономного или резервного электроснабжения.
Низкая зависимость уменьшения срока службы АКБ при понижении или повышении температуры, достигается не только благодаря большей устойчивости этого вида аккумулятора, но и обязательным применением термо-компенсированного заряда и поддержания напряжения на АКБ (заложен в инвертор МАП). Датчик температуры (он входит в комплект МАП) прикрепляется скотчем к верхней крышке одной из банок.
Тяговые кислотные АКБ, как и обычные стартерные автомобильные АКБ, как уже говорилось, требуют проверки уровня электролита раз в год (стационарные OPzS – раз в 3 года) и, при необходимости, долива дистиллированной воды.
Их надо устанавливать в нежилое проветриваемое помещение. Для этого (если помещение закрытое), обычно устанавливается вытяжной вентилятор работающий от 220 В, контакты которого подключаются к выходу 220 В бензо электростанции (или ко входу 220В МАП-а).
Помещение для аккумуляторов, желательно относительно тёплое, т.к. доступная ёмкость падает при понижении температуры (например, при -20С, доступная ёмкость становится в 2 раза меньше, чем при +25С).
Но и повышенная температура недопустима – почти любой аккумулятор, при +35С стареет в 1,5 - 2 раза быстрее. Поэтому крайне не рекомендуется устанавливать их на чердаке. Идеальное по температуре место – подвал с вытяжкой или проветриваемое техническое подполье. Подойдёт и подсобное помещение, прихожая, где не бывает высоких температур.
Для полной автономии лучше рассчитывать всю систему на 48В – потери в длинных проводах от ветряка и/или солнечных панелей будут меньше (можно и на 24В, но тогда соединения надо делать проводами большей площади сечения, начиная с 16 мм кв).
Тем, для кого вышеперечисленные минусы (обслуживание, проветривание) являются существенными, стоит задуматься о приобретении герметизированных аккумуляторов, но не обычных, а тоже изготовленных по панцирной технологии, например, от известной в области аккумуляторов, немецкой фирмы BAE. У гелевых герметичных АКБ BAE 7OPzV 490, при стоимости цикла в автономии около 100 руб, первичные вложения денег, будут в 2 раза выше, чем в панцирные АКБ Микроарт с рекомбинацией водорода (145000 руб).
С другой стороны, применение рекомбинации водорода у малообслуживаемых АКБ делает их почти необслуживаемыми.
Проки рекомбинации водорода могут ставиться и на стационарные OPzS. Однако цена одного их цикла (заряд/разряд 80%), с учётом использования рекомбинации – около 80 руб
И в принципе, для автономии, всё же лучше обслуживаемые АКБ (исключение – литий-железо фосфатные АКБ). Дело в том, что, например, гелевые АКБ достаточно «нежные». Заряд большим током, или перезаряд напряжением выше 14,1 (28,2) В, что очень вероятно при длительной эксплуатации в полной автономии, например от ветрогенератора или др., может быстро выпарить из них воду (через предохранительный клапан) и они невосстановимо потеряют ёмкость. А ведь залить воду в герметизированные АКБ обратно, уже невозможно. Постоянный недозаряд тоже губителен…
При полной автономии, всё равно надо за многим следить - и за бензогенератором (менять масло, заливать бензин), и за зарядом АКБ (не желательно оставлять их разряженными более 12 часов), и за чистотой солнечных панелей. И обслуживать ветряки надо не менее раза в год (если они есть). На этом фоне проверка уровня электролита раз в год, или, тем более, раз в 3 года (и особенно – раз в 6 лет), с возможной доливкой дистиллированной воды – не критична.
Лучше раз в 3 года «автономного полёта» долить воды, чем выкинуть через первые же 3 года (а то и через год) комплект каких-нибудь гелевых аккумуляторов.
Для большего срока службы аккумуляторов, желательно выбрать в меню МАП SINE «Энергия» напряжение отключения собственной генерации 220 В, не при 10,5 В на 1 АКБ, а 11,5 В или выше (подробнее об этом, ниже). Это приведёт к тому, что аккумуляторы будут разряжаться не на 100% и соответственно срок их службы возрастёт. Правда и доступная пользователю ёмкость (а значит и время автономной работы от одной зарядки) немного уменьшится.
Вывод: в условиях автономного электроснабжения, будет большой ошибкой покупать герметизированные обычные гелевые, или сделанные по технологии AGM аккумуляторы. Если финансы совсем ограничены, то лучше хорошие стартерные АКБ. Но всё же наиболее эффективное решение по соотношению цена/качество – тяговые панцирные АКБ Микроарт с рекомбинацией водорода или без оного. Если предъявляются жёсткие требования к абсолютному отсутствию вентиляции и при наличии средств, самым лучшим и эффективным решением проблемы отсутствия вентиляции в месте установки АКБ, конечно же являются литий-железо фосфатные АКБ.
Интересный график с количеством циклов при разных степенях разрядов (D.O.D.) у лучших (панцирных) типов аккумуляторов, приводит немецкая фирма BAE:
Графику аккумуляторам BAE PzS примерно соответствуют панцирные АКБ Микроарт.
2. Для эксплуатации же в условиях наличия сетевого 220В и его периодического пропадания (резервный или буферный режим, редкие малые разряды) хорошо подходят необслуживаемые герметизированные АКБ. На первый план тут выходит не цена цикла, а общая долговечность и отсутствие обслуживания. Ведь в подобных условиях, люди, как правило, особо за системой не следят, и тем более не следят за уровнем электролита в АКБ. Немаловажно и отсутствие требований к проветриванию. Под эти требования подходят и панцирные АКБ Микроарт, если на них установить пробки для рекомбинации водорода. При примерно одинаковой начальной цене, срок их службы заметно больше.
Количество разрядов в условиях резерва обычно малое, а сам разряд, до появления электричества, чаще всего происходит на 30 – 50%.
В этом случае, из всех герметизированных АКБ выделяются аккумуляторы 6-GFM-200, Prosolar-R RA12-200D, АКБ Микроарт с рекомбинацией и литий-железо фосфатные АКБ.
У двух последних не только очень низкая стоимость цикла среди герметизированных АКБ (один разряд на 30% у общей приведенной ёмкости 400 Ач*24 В стоит около 15 руб и 30 руб соответственно), но и самый большой срок службы (до 17 и 30 лет соответственно).
6-GFM-200 Ач 12 В
Для правильного заряда, при таком использовании, в меню инвертора МАП SINE «Энергия» надо выбрать режим заряда «4СтДозар/Буфер». Тогда заряд будет проходить выбранными токами для 2-х ступеней с дозарядом до 100%, после чего МАП перейдёт к поддержанию АКБ в состоянии 100% заряженности, т.е. перейдёт в буферный режим. Этот режим служит для компенсации малых токов утечки, при нём на каждом 12-и вольтовом АКБ напряжение 13,6В (на каждом 2-х вольтовом, соответственно 2,26 В). Это напряжение тоже можно менять (очень важно установить его в соответствии с техническими данными конкретной марки АКБ).
Для всех АКБ, при использовании в резерве, начальный ток выбирают поменьше чем для полной автономии, т.е. обычно 0,1С (соответственно 40 А для нашей ёмкости), а вторую ступень можно сделать 0,05С.
Внимательно посмотрите на характеристики приобретаемых АКБ. Надо выбрать в МАП, то напряжение конца заряда и буферное напряжение, которое им соответствует (в гелевых, это обычно не 14,5 В, а 14,1 В на 1 двенадцативольтовый аккумулятор, но читайте инструкцию, встречаются разные варианты).
В условиях резерва обычно нет надобности в бензо/дизель/газо электрогенераторе, т.к. срок автономии достигает нескольких суток (при условии установки достаточной ёмкости, не менее чем 400Ач×24В), а обслуживание и эксплуатация генератора весьма затратны и некомфортны. В случае же реального отсутствия электричества более недели, электрогенератор можно купить по необходимости, времени будет достаточно.
Вывод: в условиях резервного (аварийного или буферного) электроснабжения, подойдут практически любые аккумуляторы. Оптимальны герметизированные по технологии AGM, аккумуляторы 6-GFM-200. Более долговечны, но и всё же требуют минимального присмотра панцирные АКБ Микроарт с рекомбинацией водорода (проверка уровня и доливка воды раз в 3 – 6 лет).
Рекордным сроком службы в буферном режиме, обладают литий-железо фосфатные аккумуляторы. А среди свинцово-кислотных – рекорд принадлежит АКБ типа OPzS и OPzV (последние являются герметизировнными).
Что касается вентиляции, то, например, требования для OPzS по этому параметру не высоки: объем свежего воздуха (Vсвеж) должен составлять 50% от V, где V=0,07×Iзар×n. Здесь Iзар - наибольший зарядный ток, А; n - количество элементов аккумуляторной батареи), м3/ч.
Для нашего стандарта 400 Ач×24В, при токе заряда 0,1С=40А, Vсвеж=0,5×(0,07×40×12)=17 м3/ч.
Однако, в соответствии со СНиП 2.08.01-89, вентиляция должна присутствовать во всех помещениях, всех зданий. Например, в ванной и туалете по 25 м3/ч, кухне 60 м3/ч. Для обычных помещений мощность естественной или электрической вытяжки должна составлять 3 м3/ч на 1м3 помещения.
Это означает, что зачастую, если дом построен правильно, устанавливая аккумуляторы OPzS, можно обойтись и без дополнительной вентиляции. При наличии сети, торопиться с зарядом нет смысла и, значит, даже начальный зарядный ток можно ещё в 2 раза уменьшить, до 0,05С.
Можно ориентировочно прикинуть и требования по вентиляции панцирных АКБ Микроарт. В них больше сурьмы, поэтому, если они используются без пробок рекомбинации, то в отличии от OPzS, надо их проверять не раз в 3 года, а ежегодно (как и стартерные АКБ), соответственно требования по вентиляции выше в 3 раза. Если же эксплуатировать их с пробками рекомбинации, то проверку можно осуществлять раз в 6 лет, соответственно требования по вентиляции будут в 2 раза ниже чем у OPzS.
Отметим, что все, существующие на сегодняшний день, другие типы аккумуляторов (а это и щелочные никель-железные и никель-кадмиевые аккумуляторы, металлогидридные, суперконденсаторные и др.) или абсолютно не выдерживают сравнения по стоимости цикла, и/или не выпускаются в необходимых ёмкостях, и/или имеют существенно более низкий КПД. Поэтому никакого смысла в их применении для автономного или резервного электропитания нет.
Так, например, проводимость кислотно-свинцовых аккумуляторов намного выше, поэтому их эффективность колеблется в районе 80% против 50-60% для щелочных источников тока.
Соответственно для заряда свинцово кислотных аккумуляторов необходимо передать 120% емкости от электростанции (или от солнечных панелей, или от ветрогенератора), а для щелочных источников это значение достигает 150%. Очевидно, что в случае постоянного использования щелочных аккумуляторов резко возрастает перерасход электроэнергии, что особенно недопустимо для автономного электропитания.
Несмотря на множество технологических решений, внедренных в свинцово-кислотные аккумуляторные батареи за 150 лет с момента изобретения технологии химической аккумуляции, срок службы АКБ до сих пор во многом зависит от эксплуатационной нагрузки. Рассмотрим их по порядку:
1. Первым определяющим фактором была и остается степень разрядки аккумуляторов. Свинцовые аккумуляторы не терпят хранения в разряженном состоянии. Кроме того, при падении заряда ниже 20% активизируется процесс образования нерастворимых соединений серы, которые, в первую очередь сказываются на емкости АКБ. Помимо этого, реакция сульфатации способствуют выделению влаги, которая обеспечивает постоянное снижение концентрации кислоты. Если же аккумулятор некоторое время будет находиться в состоянии глубокой разрядки, начнется необратимый процесс образования сульфатов и, соответственно, необратимого снижения реальной емкости АКБ относительно паспортной.
Обратите внимание, что для большой ёмкости, например, 400Ач×24В, обычная небольшая нагрузка менее 500Вт (а это и есть обычное использование), разряжая АКБ до 11,5 (23) В разряжает его примерно на 80%.
Если бы нагрузка, относительно ёмкости АКБ, была бы большой, например, для вышеуказанного случая порядка 2 кВт, то из-за инертности перемешивания электролита, напряжение на АКБ упало бы до 11,5 (23) В намного раньше (вокруг свинцовых платин образовался бы слой разряженного электролита, который просто не успел перемешаться с остальным электролитом). И если при этом, инвертор отключит потребление, то спустя некоторый срок электролит перемешается, и напряжение на АКБ поднимется само. Т.е. расход ёмкости АКБ, в этом случае, будет не 80%, а гораздо меньше, что не плохо. Только вот при обычном использовании, основным потребителем является холодильник. А его средняя мощность потребления около 100 - 150 Вт.
Поэтому, чтобы гарантированно не разряжать АКБ ниже, чем на 20%-30% надо установить отключение инвертором потребления при напряжении 11,7 (23,4) В - см. таблицу ниже.
Однако, помните, что если общая ёмкость АКБ будет маленькой относительно нагрузки (например, в несколько кВт), то напряжение на АКБ может в этом случае очень быстро просесть до 11,7 (23,4) В и инвертор отключит генерацию. Чтобы такого не произошло, необходимо устанавливать емкость не менее 400Ач×24В, а ещё лучше – в 1,5 раза больше.
Нахождение АКБ в разряженном состоянии (более чем на 80%) в течении более чем 12 часов недопустимо.
2. Другим определяющим фактором для времени жизни АКБ, можно назвать температуру электролита. В случае обычных кислотных аккумуляторов, эксплуатация при повышенной на 10 градусов температуре ведет к сокращению срока службы вдвое (как отмечалось ранее, лучшие АКБ не столь чувствительны к этому параметру). Хоть в инверторе МАП «Энергия» и есть внешний температурный датчик (его следует приклеить скотчем к АКБ), позволяющий делать автоматическую компенсацию зарядных напряжений, это помогает лишь отчасти. Ограничения на использование в жаркую погоду пока никто не отменял. Поэтому, нельзя располагать АКБ на нагревающихся чердаках, нежелательно и в одном помещении с миниэлектростанцией, т.к. последняя сильно его разогревает. Идеальное место – подвал, техподполье, или подсобка/коридор с северной стороны здания.
3. Для долголетия аккумуляторов, необходим и полный, 100% заряд, что затруднительно обеспечить, если сетевого 220 В нет вообще и если для заряда использовать только мини электростанцию. Посмотрим на стандартный график заряда кислотного АКБ (у разных типов АКБ конкретные значения могут немного варьироваться, но достаточно близко).
Зона окрашенная жёлтым цветом, это 80% энергии необходимой для заряда. Она передаётся на первых ступенях заряда от миниэлектростанции, в течении первых 6 часов, и, заряжает АКБ, соответственно, на 80%.
Но чтобы зарядить АКБ на все 100% необходимо заряжать их ещё, как минимум, в течении 6 - 7 часов, причём при этом, в АКБ передастся лишь 20% энергии (зона окрашенная розовым цветом).
Получается, что для 100% заряда АКБ, надо чтобы миниэлектростанция работала как минимум 12 – 14 часов, причём эти последние 7 часов, если не нагружать её дополнительными нагрузками, практически вхолостую. Конечно, это возможно, - хоть и большинство миниэлектростанций имеют воздушное охлаждение и требуют перерыва после 6 часов работы, - можно сделать перерыв 1час и продолжить заряд. Но топливо, при этом, будет расходоваться не эффективно.
Лучший выход из положения для автономных систем – установить солнечные панели и/или ветрогенератор. Ведь почти всё необходимое для их эксплуатации уже имеется (АКБ и инвертор и резервная миниэлектростация). Солнечные панели и/или ветрогенератор позволят в определённые моменты времени (когда нагрузка мала, а солнце/ветроресурсы имеются) зарядить АКБ на 100%. Пусть это будет даже не каждый день, но и раз в неделю подобный 100% заряд будет полезен. При достаточной их мощности, система сможет выдавать электричество практически вообще без включения бензогенератора.
Другой, компромиссный вариант, это хотя бы раз месяц проводить 13 часовую, 100% зарядку от бензо/дизель/газо генератора (при необходимости понижая в инверторе зарядные токи), а в остальное время ограничиваться 80% зарядом.
Можно конечно поставить и два комплекта АКБ, подзаряжая внешним зарядным устройством, подключённым к выходу 220 В от инвертора, отдыхающий комплект АКБ. Однако, это решение по стоимости сопоставимо с первым вариантом, и менее разумно - дополнительные АКБ, в отличии от солнечных панелей и ветрогенератора, не используются, а «отдыхают». К тому же, аккумуляторы расходный, относительно менее долговечный материал.
Отметим, что аккумуляторам вреден и постоянный длительный перезаряд (заряд повышенными токами, и высокое напряжение конца заряда, и высокое напряжение буферного поддержания). Поэтому, эти параметры устанавливают в соответствии с паспортом АКБ, причем в случае наличия сети, зарядные токи, обычно устанавливают по минимальной границе.
4. Спустя несколько лет после начала эксплуатации АКБ (а в зависимости от качества аккумуляторов, бывает и через год-другой), может возникнуть разбалансировка аккумуляторов. Это явление проявляется в том, что допустим в цепочке из двух последовательно соединённых АКБ, на одном аккумуляторе устанавливается напряжение чуть ниже, а на другом – чуть выше. В итоге, общее напряжение будет нормальным и инвертор проводит заряд до положенных значений напряжений. Тем не менее, один АКБ окажется недозаряжен, а другой перезаряжен.
Поэтому, раз в год, желательно измерять цифровым тестером напряжения на каждом АКБ. В случае их разбалансировки, проводят уравнительный заряд каждого АКБ отдельно (см. ниже). Если же АКБ герметизированные (в этом случае уравнительный заряд запрещён), то проводят восстановительный заряд/разряд (см. ниже) и полный заряд каждого АКБ.
Или, если аккумуляторов несколько и соединены они последовательно-параллельно, можно попробовать поменять их местами. Так же, при последовательно-параллельном соединении, желательно объединить перемычкой средние точки у аккумуляторов (например, для сборки из 4-х АКБ на 24 В, средней точкой является 12 В).
Уравнительный заряд применяют ТОЛЬКО для аккумуляторов с жидким электролитом.
Уравнительный заряд представляет собой избыточный заряд аккумулятора, выполняемый на аккумуляторах с жидким электролитом после их полного заряда, с возможной доливкой воды. Например, компания Trojan рекомендует проводить уравнительный заряд только в том случае, если у аккумуляторов низкая удельная плотность, менее 1.250, или удельная плотность колеблется в широком диапазоне, после полного заряда аккумулятора. Не следует проводить уравнительный заряд GEL или AGM аккумуляторов.
ВНИМАНИЕ: Запрещается проводить уравнительный заряд на гелевых или AGM-аккумуляторах (т.к. используются повышенные напряжения и возможно частичное испарение воды).
Одним из способов заряда сильно разряженной батареи является ее длительный заряд очень маленькими токами (0,01 - 0,05С). Затем восстановительный разряд очень большим током (0,3 - 0,5 С) – такой ток в какой-то мере, «разрывает» слой окисла с пластин АКБ. И так, следует повторить циклы 5 - 10 раз. Но если сульфатация превысила некоторый предел, восстановление ёмкости АКБ станет невозможным.
Ориентировочное время работы аккумуляторов на различные нагрузки:
Время автономной работы зависит только от ёмкости подключённых аккумуляторов и мощности нагрузки. В таблице, оно указано. Но необходимо учитывать, что если не использовать электрообогреватели (а их использование от автономных источников не рекомендуется), в реальных условиях такой нагрузки в среднем не будет никогда.
Например, в стандартном доме к автономному источнику обычно подключают освещение, телевизор, холодильник, насос водоснабжения и отопительный котёл на жидком топливе. Надо рассмотреть два аспекта – а) необходимую мощность для обеспечения пусковых мощностей всего оборудования; б) среднюю потребляемую мощность в сутки.
Пусковая мощность зависит от конкретных устройств. Но можно прикинуть ориентировочно. Пуск освещения – 500 Вт, телевизора 150 Вт, холодильника 1,5 кВт, насос (сильно зависит от его мощности и глубины расположения) 5 кВт, котёл 1 кВт. Итого, порядка 8 кВт. Следовательно, по этому параметру, для описанного случая гарантированно сработает МАП "Энергия" SINE 9,0 кВт (скорее всего, справится и МАП SINE 6 кВт).
Средняя же потребляемая мощность будет всего порядка 500 Вт около 6 часов в сутки. Это обусловлено тем, что освещение и телевизор обычно включаются по вечерам, насос включается редко и на маленький срок (при потреблении его мощность 500 – 1500 Вт), холодильник потребляет 150 Вт и включается на 15 минут в час. Котёл потребляет порядка 200 Вт и тоже работает в прерывистом режиме.
Теперь легко оценить время реальной автономной работы. Смотрим по таблице – там написано, что например от 6 шт АКБ по 190 А/ч (или набранная такая же энергоёмкость из любых аккумуляторов 570 Ач×24 В, или 285Ач×48 В, или 1140 Ач×12 В), при нагрузке 500 Вт, будут работать 25ч 30м. Но так как, ориентировочно, такое потребление будет лишь 6 часов в сутки, то 25,5/6=4 суток. Таким образом, вышеперечисленная нагрузка, от 6-и АКБ по 190 А/ч, будет обеспечена автономным питанием примерно в течении 4-х суток.
Для определения времени работы неважно как соединены между собой аккумуляторы - последовательно, параллельно или последовательно и параллельно.
Напоминаем так же, что аккумуляторы обладают свойством остаточной ёмкости. Т. е., например, если используя аккумулятор 90 Ач×12 В вы работали газонокосилкой мощностью 1 кВт в течении 45 мин. после чего МАП выключил 220 В (т.к. напряжение на АКБ просело ниже 11 В) – уменьшите нагрузку до 500 Вт (подключите, к примеру, электролобзик) и работайте ещё столько же! Затем можно подключить 300 Вт-ную дрель, а потом 130 Вт-ный краскопульт, далее 60 Вт-ный паяльник и, наконец, 30 Вт-ную лампочку. Однако в двух последних случаях, нагрузка буде потреблять малый относительно ёмкости АКБ ток, и вы «вычерпаете» около 100% от максимальной ёмкости аккумулятора (если конечно, напряжение отключения потребления в инверторе не установлено на 11,5 В или выше). А «вычерпывание» 100% не рекомендуется, т. к. ресурс аккумулятора, в этом случае, сокращается.
Из вышеприведенного примера совсем не следует что эти (и другие) нагрузки нельзя включить все сразу.
В заключении отметим, что приукрашивание характеристик АКБ, производителями достаточно вероятно. Ведь можно лишь слегка изменить условия тестирования – и вот они, рекордные цифры. Или, к примеру, считать, что АКБ надо снимать с эксплуатации при падении не до 80% от исходной ёмкости, а до 60%. Другой пример, приводившийся выше – ёмкость у одних АКБ указывается при 5-часовом разряде, у других при 10-часовом, у третьих – при 20 часовом, а у некоторых (автомобильных) при 120-часовом (т.е. очень малым током). Понятно, что в первом случае, реальная ёмкость выше, чем в последнем процентов на 20 – 25, хотя цифры ёмкости в паспорте будут одинаковы.
А у автомобильных стартерных вес, относительно заявленной ёмкости, удивительно мал. Например, стартерный 190 Ач×12 В весит 43 кг, а 6 шт панцирных АКБ Микроарт 210 Ач×2 В (т.е. в сумме 210 Ач×12 В) весят 84 кг. Почему же у автомобильного АКБ вес практически в 2 раза ниже? Хорошо, положим панцирная технология «весит» больше. Но ведь и у всех других не стартерных АКБ вес относительно ёмкости больше, например, гелевых Haze HZY12-200 и Challenger G12-200 вес 63 кг. Почему же у автомобильного, он в 1,5 раза ниже? Потому что свинцовые пластины для автомобильных стартерных АКБ делают совсем тонкими, что не может не влиять на их долговечность и устойчивость к разрядам.
×××
Теперь, обладая багажом специальных знаний, Вы сможете сделать осознанный выбор. Защититься от последствий природных катастроф и техногенных аварий, можно обеспечив себя резервным и/или автономным электропитанием. Сегодняшний мир, это мир со скудеющими ресурсами. Помните - «удача любит подготовленных»!
УЗП Микроарт (байпас), 63A, в модификации 19 дюймов
УЗП Микроарт (байпас), 100A, в модификации 19 дюймов
УЗП Микроарт (байпас) 3 фазы, 63Ax3, в модификации 19 дюймов
УЗП Микроарт (байпас) 3 фазы, 100Ax3, в модификации 19 дюймов
УЗП Микроарт (байпас) 3 фазы, 100Ax3
УЗИП - устройство защиты от молний/наводок 11кВт
DS100R Конвертор RS232 ethernet и адаптер питания к нему
8 (495) 504-2025
Не смогли до нас
дозвониться?
мы позвоним
вам сами!
Для вашего удобства мы создали сайт с новыми возможностями:
microart.ru
01/06/2022
Выпущены новые прошивки для МАП и КЭС. Существенно улучшена работа и функционал инвертора и солнечного контроллера. Рекомендуем их обновить. Подробнее см. здесь
21/04/2024
Доставка по Москве и области как правило бесплатна
Монтаж автономного или бесперебойного электроснабжения от производителя:
Внимание, АКЦИЯ! При покупке в офисе-продаж системы на основе инвертора МАП вместе с комплектом АКБ, скидка на АКБ - 10%. Акция действует до 31 сентября 2024 г.
Телефон розничного магазина, где вы можете узнать подробности и записаться: +7 (495) 542-32-30
06/08/2024
18-20 июня 2024 года в Москве (ЦВК "ЭКСПОЦЕНТР") компания "МИКРОАРТ ПРО" приняла участие в международной выставке «RENWEX 2024»: «Энергосбережение, зеленая энергетика и электротранспорт». Было представлено оборудование в сфере альтернативного и бесперебойного энергоснабжения, в том числе новинка - система МАП LONG TIME с двойным преобразованием.
30/06/2024
МИКРОАРТ ПРО выпустила видео о системе бесперебойного электропитания двойного преобразования (on-line) МАП LONG TIME.
Система включает в себя все необходимые компоненты, включая карбоновые или LiFePO4 аккумуляторы большой ёмкости.
01/04/2024
Владелец производственной базы масштабировал
резервную энергетическую систему предприятия: одна из крупнейших солнечных электростанций в Приморском крае 120 кВт на основе оборудования МИКРОАР
27/03/2024
Внимание!
В продаже появились новые системы бесперебойного электропитания МАП LONG TIME (on-line) – это интеллектуальное модульное оборудование для электроснабжения, объединяющая аккумуляторный накопитель энергии, защитные устройства, блок стабилизации и двунаправленный инвертор в едином шкафу, т.е. она имеет блочное исполнение.
01/02/2024
На основе встроенных реле, реализован алгоритм работы МАП TITANATOR для управления топливным генератором (режим АВР). Подробнее см. здесь.
17/03/2023
Наша компания выпустила ролик о том, как производится оборудование МИКРОАРТ:
Инвертор МАП и солнечный контроллер КЭС – это самые первые разработанные и изготовленные в России устройства из области возобновляемой энергетики!
21/01/2022
Компания "МИКРОАРТ ПРО" приняла участие в выставке HEAT&POWER с 26 по 28 октября 2021 года, представив давно зарекомендовавшее на рынке оборудования, а также новые разработки и решения.
28/10/2021
Наш партнёр, компания "Умная Энергия", выпустила ролик об инсталляции МАП TITANATOR 10 кВт и о его возможностях. Подробнее см. здесь
04/10/2021
Дефицит полупроводников по всему миру может продлиться до 2023 года. В результате во всем мире, в том числе и в России, пользователи электронной продукции столкнулись с нехваткой товаров и ростом цен.
Подробнее см. здесь
13/09/2021
Компания «МИКРОАРТ ПРО» стала номинантом второго этапа Национальной премии в области экологических технологий «ЭКОТЕХ-ЛИДЕР 2021».
Подробнее см. здесь
10/09/2021
Компьютеру АТМ-турбо 30 лет!
Подробнее см. здесь.
22/07/2021
22-24 июня в ЭКСПОЦЕНТРЕ на Красной Пресне компания "МИКРОАРТ ПРО" приняла участие в международной выставке «RENWEX 2021»: «Возобновляемая энергетика и электротранспорт». Было представлено оборудование в сфере альтернативного и бесперебойного энергоснабжения, в том числе новый инвертор МАП TITANATOR и др.
17/06/2021
Внимание!
В продаже появились новые модификации инверторов МАП TITANATOR и МАП TITANATOR UPS
01/06/2021
Уважаемые партнеры и клиенты!
В связи с продолжающейся пандемией, наша компания, работает с некоторыми ограничениями.
Приём оборудования в ремонт, а так же его выдача со склада, производится по записи.
Звоните: +7 (495) 477-54-51 добавочный 1, +7 (495) 477-54-51 добавочный 5.
Так же, можно приобрести товар в розницу
+7 (495) 542-32-30
05/03/2021
Выпущен ролик РЕСТАВРАЦИЯ РЕДКОЙ АМФИБИИ БРДМ-1 КО ДНЮ ПОБЕДЫ. ПЕРВОЕ В МИРЕ ВИДЕО БРДМ-1 НА ПЛАВУ. Часть 1. Подробнее см. здесь.
01/05/2021
Внимание! Вышло постановление №299 о функционировании объектов микрогенерации для физ. и юр. лиц. Теперь энергосбытовые компании обязаны заключить с вами договор на покупку электроэнергии от вашей солнечной электростанции и др. Есть возможность работать по взаимозачёту (днём отдал в сеть, а ночью потребил), а если отдал больше чем потребил, то за излишки можно получить около 2-х руб. за кВт-час.
Потребуется установка двустороннего счетчика.
05/03/2021
Внимание! В связи с увеличением качества и надёжности, гарантия на солнечные контроллеры КЭС всех модификаций произведённые с с 01.02.2021, гарантия будет 2 года. 29/01/2021
Наши партнеры – компания «Умная Энергия», представили проект по обеспечению круглогодичного автономного электроснабжения экопоселения на 40 кВт в Крыму. МАЭС Карбон.
05/03/2020
Были выпущены в продажу утеплённые контейнерные мобильные солнечно-бензиновые электростанции МАЭС Карбон.
12/11/2019
Внимание! В связи с увеличением качества и надёжности, с 07.07.2019 гарантия на инверторы МАП DOMINATOR увеличивается с 2 до 3-х лет. Кроме того, если при заказе МАП Pro или МАП HYBRID, если будет выбрана дополнительная опция - установка высокоэффективного фильтра, то гарантия будет тоже увеличена до 3-х лет. Подробнее см. здесь.
07/07/2019
Выпущен ролик Солнечно-ветряная электростанция 31 кВт для парк-отеля. Подробнее см. здесь.
2019
Выпущен ролик Солнечная электростанция 120 кВт для усадьбы и конефермы. Подробнее см. здесь.
07/07/2019
Выпущен ролик Солнечная электростанция для дома на заборе: бесперебойное питание и зелёная энергия 10 кВт! Подробнее см. здесь.
02/06/2019
Внимание! У нас в продаже появились аккумуляторы новейшего типа - герметизированные необслуживаемые карбоновые АКБ. Обладают длительным сроком службы в условиях глубокого разряда (15 – 20 лет). Число циклов при 80% разрядах у серии PLC 12-100 FT – 1500, у KRCF 12-170 – 2400. Т.е. при цене в 1,5 - 2 раза выше чем у АКБ типа гель или типа АГМ, число циклов у них в 4 - 5 раз больше.
16/04/2019
Выпущен ролик БРУТАЛЬНЫЙ ЭЛЕКТРО-БАЙК (ЧОППЕР-МОНСТР) И АВТОНОМНОЕ ЭЛЕКТРОСНАБЖЕНИЕ ДОМА СВОИМИ РУКАМИ. Подробнее см. здесь.
05/04/2019
Закончена разработка облачного ПО Малинка для смартфонов на базе Андроид и iOS, для владельцев МАП DOMINATOR или внешнего ПАК Малина.
Подробнее см. здесь.
11/01/2019
Выпущен ролик о большом солнечном катамаране, прошедшем за лето 5000 км. Путь пройден за счёт энергии солнечной электростанции 11 кВт, разработанной, произведённой и смонтированной нашей компанией. Подробнее см. здесь.
02/12/2018
Мы расширили свою деятельность в сфере энергосбережения. Представляем новейшую разработку - электронный термостат NUT MICROART для систем терморегулирования, в том числе систем «умного дома».
22/11/2018
Выпущен ролик о мощной солнечной электростанции 27 кВт на основе инверторов МАП DOMINATOR 60 кВт (3х20) и сетевого инвертора Sofar 30 кВт, обеспечивающей электричеством производственное предприятие в основном за счёт солнца, и гарантирующую его бесперебойную работу. Подробнее см. здесь.
27/07/2018
Внимание! С 2018 года, при условии монтажа на стационарных объектах силами наших сотрудников (Москва и МО), гарантия на инвертор МАП увеличивается с 2 до 5 лет, а на солнечный контроллер КЭС с 1 до 2-х лет. Подробнее см. здесь.
09/01/2018
Выпущен мультфильм «Нам инвертор МАП поможет!» См. здесь.
01/04/2018
Выпущен ролик Море позитива, или о путешествиях на внедорожном кемпере и его устройстве.
Внедорожный кемпер, оборудованный всем необходимым, - от холодильника и газовой плиты, до солнечной электростанции (на основе инвертора МАП и солнечного контроллера КЭС), обеспечивает кров и комфорт в самых диких уголках природы. См. здесь.
11/12/2017
Постепенно, сфера применения инверторов МАП растёт. Это уже не только частные дома или предприятия. Теперь и армия и спецслужбы, начинают всё активнее использовать наше оборудование. Видео можно посмотреть здесь
01/10/2017
Выпущен короткометражный художественный фильм «МАП и Ленин», или приключения питерских музыкантов". Параллели между мечтой Ленина об электрификации, его шалашом, в котором он скрывался 100 лет назад, и современным электрифицированным "шалашом" музыкантов могут вызвать улыбку. При этом, однако, затрагиваются серьёзные вопросы о влиянии личности и прогресса на будущее, т.е. на наше настоящее. Фильм см. здесь
02/09/2017
Выпущен художественный ролик "Разум из Прекрасного Далёка". Как в нём показано, ничто не мешает российским бесперебойникам МАП, питать электричеством Электронный Разум Земли будущего! Подробнее
см. здесь
26/05/2017
Была разработана модификация инвертора МАП DOMINATOR, наиболее подходящая под стандарт UPS (ИБП), со средним временем переключения 2 — 4 мс. Подробнее см. здесь.
23/03/2017
Выпущен ролик об 7-и летнем опыте эксплуатации солнечной электростанции с инвертором МАП в условиях полной автономии.
Подробнее
см. здесь
22/02/2017
Разработаны новые корпуса для МАП 9 — 20 кВт, которые могут как стоять на колёсиках, так и вешаться на стену, подробнее см здесь.
18/11/2016
Выпущен ролик "Необычное путешествие: солнечная электростанция для дайверов". Видео см. здесь.
10/10/2016
Открыта первая в России заправка электромобилей от солнечной энергии (использовалось оборудование от нашей компании). Подробнее см. здесь.
06/10/2016
Телеканал REN TV, в передаче "Ремонт по честному", провел тестирование нашей солнечной электростанции и сравнение её с бензогенератором. Подробнее см. здесь.
26/08/2016
Выпущен ролик о выезде на Волгу кемпера, оснащённого мощной солнечной электростанцией на основе производимых нами инверторов МАП и солнечных контроллеров КЭС для отдыха и испытаний. Видео см. здесь.
20/07/2016
Проведён эксперимент с сожжением одного из 2-х запараллеленных МАП DOMINATOR, чтобы убедиться в надежности и живучести системы.
Видео см. здесь.
23/05/2016
Разработан новый солнечный контроллер КЭС 100 В 20 А МРРТ.
Подробнее здесь.
18/04/2016
Выпущен ролик о тестировании солнечной электростанции на основе инвертора МАП и солнечного контроллера КЭС на плоту для сплава по реке (предварительная проверка работы на берегу).
Подробнее здесь.
25/03/2016
Анонс путешествия с солнечной электростанцией на основе инвертора МАП.
Подробнее см. здесь.
10/03/2016
Разработан новейший инвертор МАП DOMINATOR, с новыми возможностями.
Видео см. здесь.
20/01/2016
Выпущен видеоролик по высокопроизводительным автономным переносным установкам очистки воды для походных условий, дач и квартир.
Видео см. здесь.
15/12/2015
Уважаемые клиенты!
В продажу поступили мобильные источники энергии.
Ознакомиться с ними можно здесь.
12/11/2015
Состоялся XV Российский энергетический форум Международной выставки «ЭНЕРГЕТИКА БРИКС И ШОС» XXI специализированной выставке «ЭНЕРГОСБЕРЕЖЕНИЕ. СВЕТОТЕХНИКА. КАБЕЛЬ»
09/11/2015
Выпущен видеоролик по автономному электроснабжению фермы Молодёжное.
Видео см. здесь.
20/10/2015
Жёсткое тестирование солнечной электростанции на плоту известного блогера А. Земского.
Видео см. здесь.
18/09/2015
Выпущен видеоролик по автономному электроснабжению в городе (дом на колёсах).
Видео см. здесь.
11/09/2015
Побит рекорд мощности автономных бытовых инверторов, - была выпущена модель МАП с максимальной мощностью в 20 кВт. При этом пиковая мощность, которую может выдержать инвертор без каких-либо последствий, составляет 25 кВт.
Подробности см. здесь
07/09/2015
Видео-анонс статьи по конструкции инверторов.
Подробнее см. здесь.
29/07/2015
Выпущен видеоролик по автономному электроснабжению для дачного дома.
Видео см. здесь.
29/06/2015
Разработан и выпущен новый комплекс для управления и мониторинга нашего оборудования и электросетей.
Подробно ознакомиться с ПАК "Малина" можно здесь
25/05/2015
Внимание, в связи с падением курса доллара к рублю, в мае цены на многие товары понижены. 12/05/2015
Внимание! Акция в связи с 15-и летием выпуска первого российского инвертора (МАП).
Отправьте видео-ролик с отзывом о продукции и Вашем уникальном опыте применения приборов компании и получите скидку 10% на будущие покупки и подарок – сетевой фильтр Sven Fort Pro*. Режиссер лучшего видео получит приз – комплект (8 шт) литий-железо фосфатных АКБ 240 Ач*3,4 В и BMS!
Принять участие и получить купон можно здесь
18/03/2015
Состоялся Третий Международный Выставка-Форум по энергосбережению и энергоэффективности ENES 2014
Подробнее см. здесь.
01/12/2014
Состоялась (5-8 ноября 2014 года,г. Ялта) конференция-выставка «Актуальные вопросы энергообеспечения Крыма и города Севастополя».
Подробнее см. здесь.
12/11/2014
В продажу поступили литий-железо фосфатные АКБ в комплекте с BMS Микроарт.
Подробности см. здесь.
30/07/2014
Состоялась 1-я солнечная регата в России.
Подробности гонки см. здесь.
26/07/2014
Закончена разработка «BMS Микроарт» для заряда литий-железо-фосфатных аккумуляторов. Подробнее см. здесь
16/06/2014
Выпущено новое ПО для Android. Оно позволяет использовать коммуникатор или планшет в качестве дистанционного табло, отображающего параметры инвертора МАП. Оно так же позволяет управлять МАП и отсылать СМС по событиям и запросам.
06/06/2014
Вышла новая прошивка для солнечного контроллера ECO "Энергия" MPPT PRO 200/100.
Программа серьёзно доработана и исправлена ошибка по ограничению мощности от СП. Всем купившим контроллер до 13 мая 2014 и имеющим мощность СП более 600 Вт, обновить необходимо.
Скачать можно здесь.
15/05/2014
Состоялась конференция CISOLAR-2014.
Подробнее см. здесь.
30/04/2014
На базе ОАО "Теплоприбор" были проведены испытания МАП SIN "Энергия" и др. оборудования в условиях сверхнизкой температуры -50°С.
Подробнее см. здесь.
22/04/2014
Выпущено новое ПО для OC Windows, предназначенное для дистанционного мониторинга, настройки параметров и управления МАП SIN "Энергия" всех версий.
Скачать можно здесь.
14/03/2014
В продаже появилось новое устройство - автоматический коммутатор фаз (АКФ) (перевод 3-х фаз на 1 линию, для резервирования).
17/10/2013
Выпущен первый, разработанный в России, солнечный контроллер MPPT PRO.
Подробнее об испытаниях см. здесь.
Скачать паспорт изделия можно здесь.
14/08/2013
Уважаемые клиенты!
Выпущено новое ПО для OC Windows с поддержкой LAN.
Скачать можно здесь.
12/08/2013
Уважаемые клиенты!
При сдаче нам на утилизацию МАП-1 в любом состоянии, предоставляется скидка на любой новый МАП SIN в размере 20%
02/07/2013
Выпущена новая прошивка для МАП SIN Pro и HYBRID. Теперь стала возможна работа с сетевыми инверторами подключёнными к выходу МАП-а (теперь МАП умеет управлять ими) - подробнее см. здесь. Кроме того, в прошивке уменьшены требования к качеству синуса 220 В от мини-электростанции и др.
03/06/2013
Запись на обучение здесь
Уважаемые коллеги! С 27 мая 2013 года наша компания начинает проводить обучение персонала дилеров и др. техническим аспектам монтажа и настройке оборудования, предлагаемого нами.
Обучение платное. По окончании курса выдаётся сертификат.
29/04/2013
Закончена разработка трёхфазной системы бесперебойного (автономного) электроснабжения на основе инверторов МАП «Энергия». Новый комплекс имеет ряд существенных технических преимуществ перед зарубежными конкурентами, а кроме того, более низкую цену. Работать синхронно с 380 В (3х220 В) смогут три инвертора модификации МАП «Энергия» HYBRID, оснащённых дополнительными платами сопряжения.
24/04/2013
Статистика ремонтов с мая 2012 (а точнее, практически полное их отсутствие), показала очень высокую надёжность современной модификации инверторов МАП SIN "Энергия". В соответствии с повышением уровня качества и надёжности, на инверторы МАП SIN "Энергия" устанавливается срок гарантии 2 года.
12/04/2013
Модернизация МАП Pro до HYBRID стала возможна для приборов на основе плат версии 9 и выше (делается в сервисной службе):
1,3 и 2 кВт - 3500 руб
3 и 4,5 кВт - 6000 руб
6 и 9 кВт - 9000 руб
12, 15, 18 и 20 кВт - 18000 руб
21/01/2013
Для повышения качества тестирования инверторов МАП SIN Энергия, с ноября 2012г, отдел ОТК был снабжён тепловизорами. Теперь перегрев любой детали можно сразу увидеть на экране.
01/11/2012
Самый мощный инвертор в мире! Максимальная мощность инвертора МАП SIN Энергия Pro достигла 18 кВт (номинальная мощность 12 кВт). Подробнее см. здесь. Стоимость новой модели – 99990 руб. Модификация МАП SIN Энергия HYBRID v.1 48-220 18 кВт стоит 129000 руб. 01/10/2012
Фотогалерея некоторых объектов, где мы смонтировали наше оборудование "под ключ"
24/09/2012
МАП "Энергия": сюжеты из ВЕСТИ 24, и аэрофотосъемка! ВИДЕО
24/09/2012
На склад и в магазин поступили ветрогенераторы на 5 кВт, монокристальные солнечные панели (батареи) на 60 Вт и 200 Вт. Ждать товар более не надо!
28/08/2012
В продаже появились устройства защиты МАП, предохраняющие ваше оборудование и предотвращающие поломки инверторов и вашего оборудования!
23/08/2012
Первый российский гибридный инвертор МАП SIN "Энергия" HYBRID v. 1. с мощностями от 1.3 до 15 кВт. Подробности здесь
11/07/2012
Цена на самые качественные монокристаллические солнечные батареи (панели) снизилась! подробности здесь 02/07/2012
МАП SIN "Энергия" - первый инвертор умеющий заряжать и литий-железо-фосфатные аккумуляторы LiFePO4
Подробности здесь.
28/05/2012
В линейке моделей МАП "Энергия" Pro появился инвертор в 15 кВт. под заказ, срок исполнения 30 дней cм. эл. магазин. 04/04/2012
Реорганизован и усилен отдел ОТК, введена персональная ответственность за проверку приборов. Качество приборов в массовой серии существенно повышено. Подробнее см. здесь. 29/03/2012
В линейке корпусов для МАП появились корпуса под стандартную 19-и дюймовую стойку. Подробнее см. здесь.
15/03/2012
Солнечные Модули по очень привлекательным ценам поступили к нам в электронный магазин! Подробности здесь.
21/02/2012
Состоялась выставка ENES с 24 по 26 ноября 2011 г. Москва, ВВЦ, павильон Электрификация. 24/11/2011
В журнале "Наука и жизнь" в августовском номере опубликована статья "Электроэнергия от "Энергии". 01/08/2011
В разделе "Использование" размещено видео с демонстрацией сварки от обычного автомобиля с помощью МАП-SIN 12В-220В 2,0кВт. 03/07/2011
В офис-продаж поступили самые долговечные (срок службы более 20лет) аккумуляторы OPzS и OPzV (промышленно-стационарные панцирные) 09/05/2011
В продажу поступили российские солнечные батареи по рекордно низкой цене - 120 руб. за Ватт, из монокристаллического кремния! Высокое качество изготовления. 18/04/2011
Розничная точка продаж (офис-продаж) переехала по адресу 01/12/2010
Добавлен интеренсный видеоматериал в раздел "Использование-инсталляции". 10/09/2010
Значительно снижены цены на ветрогенераторы www.vetrogenerator.ru 14/08/2010
Вышла новая прошивка 10.0 для платы v.5X МАП-LCD от 15.06.2010 и новая прошивка 9.7 для платы v.4.3 МАП-LCD от 27.05.2010. Новое в версии 10.0 и 9.7 по сравнению с базовой версией 8.2 можно посмотреть здесь 27/05/2010
В продажу поступила очередная партия ветрогенераторов качественной надежной конструкции. 24/04/2010
Состоялась международная выставка по возобновляемым источникам энергии (солнечная и ветровая) 25-28 мая 2010г. 20/04/2010
На телеканале "СТС" вышла телепередача "Галилео" с нашим участием, где рассказывалось о предлагаемом нами оборудовании. 22/11/2009
для тестирования установлен ветрогенератор 24В 2кВт. 06/09/2009
в продажу поступили ветрогенераторы улучшенной конструкции, мощностью 0.5; 1; 2кВт на 24В; 3 и 5кВт на 48В, а так же мачты к ним. 06/08/2009
готовится к выпуску контроллер заряда АКБ от ветрогенераторов 12/02/2009
в продажу поступил МАП-LCD 01/03/2008
начал работу специализированный сайт посвященный ветрогенераторам - www.vetrogenerator.ru. 06/09/2007
Дистанционный контроль 220В. В продажу поступил Управляемый сетевой фильтр-датчик с реле для подключения к охранной системе <Страж>. 29/06/2007
в продаже появились ВЭУ (ветроэнергетические установки) 10/04/2007
в продаже появились новейшие охранные системы. 02/04/2007
Прошла выставка "Малая и возобновляемая энергетика" (3-я международная специализированная выставка в рамках III Международного форума "Энергетика и экология"). Время проведения: 25.10.2006-27.10.2006 Москва, ВВЦ, п. №57, А-21 А-22. 01/11/2006
поступили в продажу солнечные модули для автономного электроснабжения. 25/06/2006
поступили в продажу защитные устройства "Монитор сети" (фильтр-удлинитель с электронной защитой по току и напряжению). 01/02/2006
поступил в продажу САП "Энергия"
(управление системой автоматического питания от миниэлектростанции, совместно с блоком аккумуляторов и МАП "Энергия").
01/01/2006
готовится к выпуску САП "Энергия"
(управление системой автоматического питания от миниэлектростанции, совместно с блоком аккумуляторов и МАП "Энергия").
01/06/2005
готовится к выпуску "монитор сети", сочетающий в себе функции мощного сетевого фильтра и электронного предохранителя по току и напряжению 16/03/2005
начат выпуск МАП "Энергия" V9.0 с дополнительной защитой от повышенного напряжения по входу от аккумуляторов 02/02/2005
начато производство стабилизаторов напряжения 03/04/2004
начато производство преобразователей напряжения с 48В 02/03/2004
выпущены модели преобразователей напряжения на 8,8кВт и 12кВт 11/01/2004
начат выпуск МАП Энергия v 7.0 с повышенной устойчивостью к выбросам сетевого напряжения превышающим 220В 11/12/2003
разработан контроллер для подключения МАП "Энергия" к компьютеру. Позволяет менять некоторые настройки последнего 22/05/2003
По заказу ВНИЭСХ разработан контроллер солнечных батарей и ветроэнергетических установок, устанавливаемый по желанию клиента, в МАП "Энергия". Он предназначен для совместной работы последнего с СБ и/или ВЭУ (ток заряда до 80А, напряжение до 300В). 17/01/2003
получен ПАТЕНТ на изобретение №2001125519 (на МАП "Энергия") 04/11/2002
начато производство новой версии преобразователя, более надежно работающего при повышенных напряжениях питания (со стороны аккумулятора - генератора) 10/10/2002
начато производство новой версии преобразователя, способного, также, работать с мощными насосами и современными холодильниками 28/07/2002
получено свидетельство ФИПС на полезную модель (МАП "Энергия") 03/06/2002
получен сертификат соответствия N РОСС RU.ME68.B00554 на продукцию МАП "Энергия" 23/05/2002
начато производство новой версии преобразователя 25/10/2001
начал работать наш новый сайт посвященный преобразователям напряжения (инверторам) - www.invertor.ru 01/10/2001
подана заявка в ФИПС на патент №2001125519 20/09/2001
завершена разработка новой модели преобразователя - МАП "Энергия" (новые возможности, полный автомат). 22/06/2001
мелкосерийное производство модели ПНЗУ-1 10/03/2001
изготовлен первый опытный образец преобразователя 30/10/2000
начато производство новой версии преобразователя 01.10/2001
начал работать наш новый сайт посвященный преобразователям напряжения (инверторам) - www.invertor.ru 01/10/2001
подана заявка в ФИПС на патент №2001125519 20/09/2001
завершена разработка новой модели преобразователя - МАП "Энергия" (новые возможности, полный автомат). 22/06/2001
мелкосерийное производство модели ПНЗУ-1 10/03/2001
изготовлен первый опытный образец преобразователя 30/10/2000
Наши страницы - это высокотехнологичный, соверменный, правильный и проверенный html-код для вас. Оптимизирован для быстрой загрузки и просмотра на любых устройствах.